
Love in the Time of Compiler Construction

Andrea Shepard <andrea@persephoneslair.org>

2017-05-28

Hammer
Parser combinator library in C

Many of you will already be familiar, but...

I Parse input strings according to a tree of parser combinators,
created using library API

I For example, this recognizes {’ab’, ’ac’}:

HParser *p =

h_sequence(

h_ch(’a’),

h_choice(

h_ch(’b’),

h_ch(’c’),

NULL),

NULL);

Hammer backends

Such as...

I Packrat parser (default)

I GLR and LALR backends

I LL(k) backend

Problem
The packrat backend is slow. Parsing the preceding example
involves calling h do parse(), pulling a function pointer from the
h sequence vtable, calling it, reading out a list of parsers in the
HParser structure, calling h do parse() on them in turn, and so
on.

Toward parser JITs

We actually know a lot more about what we’re expecting to see
next when parsing some concrete HParser than when writing a
generic parse function for any HParser of that type, though. A
custom parse function for that specific parser could cut out a lot of
the pointer-chasing, and open the path to many more potential
optimizations.

If only there were some way of constructing such functions on the
fly...

Introducing the LLVM backend

The new LLVM backend I’ve been writing does exactly this -
constructs and compiles functions to recognize HParsers on the fly,
and then runs them to parse input. It thus reduces the amount of
indirection and number of memory accesses needed for many
operations, and sometimes gains a significant edge from knowing
the parser’s arguments at compile time.

A simple example, pt. 1

Consider the parser h not in({’a’, ’b’, ’c’}, 3). This leads
to LLVM IR like this (some preamble/postamble omitted):

l1: %cmp1 = icmp ule i8 %2, 99

br i1 %cmp1 , label %l2 , label %l3

l2: %cmp2 = icmp ule i8 %2, 96

br i1 %cmp2 , label %l4 , label %l5

l3: br label %success

l4: br label %success

l5: br label %fail

A simple example, pt. 2

Compiling this IR, in turn, generates this (again, some preamble/
postamble is omitted):

mov %rax ,%rbx

movzbl %bl ,%eax

cmp $0x64 ,%eax

jae 0x7ffff7fed033 <success >

movzbl %bl ,%ecx

xor %eax ,%eax

cmp $0x61 ,%ecx

jae 0x7ffff7fed076 <fail >

Much nicer than index calculations and loading something from a
bitmap!

Generating optimal charsets

The h not in() parser is implemented as a charset, which in the
non-LLVM packrat backend is just done by indexing into a 32-byte
bitmap. For sufficiently rough character sets this may be the most
efficient method, but for many cases in practice, comparisons as in
the preceding are better.

To generate charsets, we express them as a tree of operations such
as splitting at a particular point (lt/gt comparison instruction),
complementation (a free swap of success and failure branch
targets), sequential equality comparisons (efficient for very sparse
sets) or a bitmap. The optimal tree is searched for once during
h llvm compile().

Charset optimization

You can see here how we build up the membership tests out of
elementary actions (the full dump also shows a bitmap and range
brackets at each node, omitted here for space reasons):

CHARSET_ACTION_SPLIT

| idx_start = 0, split_point = 99, idx_end = 255

| cost = 2, depth = 0

+--CHARSET_ACTION_SPLIT

| | idx_start = 0, split_point = 96, idx_end = 99

| | cost = 1, depth = 1

| +--CHARSET_ACTION_ACCEPT

| | idx_start = 0, idx_end = 96

| | cost = 0, depth = 2

| +--CHARSET_ACTION_COMPLEMENT

...

Other leaf nodes

Most of the other leaf HParsers are straightforward; tokens are a
little complex - very short ones are sequential equality tests, longer
ones are comparison loops against a string constant stored in
memory.

To minimize memory and cache use, and since some, such as
charsets, can be complex to generate, we will memoize these
parsers and recognize when the same one occurs more than once.

Higher-order nodes (not yet implemented)

Higher-order parsers like h sequence() are implemented with
indirect calls to their children in the pre-LLVM backend. The
requirement to correctly implement this recursion is to keep a
stack of (parser, position within parser) pairs; an explicit stack was
considered, but return addresses are an almost-as-concise
representation as any other likely to be feasible, and LLVM is
pleasantly flexible about calling conventions, so the overhead of
making each memoized HParser its own LLVM function seems
acceptable.

Future Directions?

I We could JIT functions based on pattern-matching parser tree
fragments - e.g. h choice(h ch(’a’), h ch(’b’), ...,

NULL) replaced with a single optimal charset recognizer.

I We could also recognize parsers stacked with h action(),
and avoid allocating and constructing intermediate parse
results in cases when the action rather than a parse tree is the
intended result and we could just invoke it directly from the
JITted parser.

Remaining possible optimizations

I The explicit calls out of LLVM to h read bits() one char at
a time or to make result() may not be the most efficient
thing to do; this should be investigated further and profiled.

I It probably isn’t useful to try to use this approach for any of
the other backends (e.g. LALR, LL(k)), since they’re
table-driven and have most of their complexity at table
generation time, with much tighter and simpler parse-time
code.

I We should try to empirically determine optimal values of the
cost parameters in some of the leaf node parser codegen. E.g.
bitmap lookups are currently somewhat arbitrarily treated as
equal to 5 compare-and-branch ops.

URLs

Main Hammer repository

https://github.com/upstandinghackers/hammer

LLVM backend WIP repository

https://github.com/puellavulnerata/hammer/tree/llvm-backend

